93 research outputs found

    Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidneyβ€”potential mechanism of lifespan extension

    Get PDF
    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6Β months of age. The kidneys were collected 2Β months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes

    Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity

    Get PDF
    Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice

    Identification of Dmrt2a downstream genes during zebrafish early development using a timely controlled approach

    Get PDF
    This research was supported by FCT (Portugal) grant (PTDC/SAU-BID/119627/2010) given to L.S. L.S. was supported by an IF contract from FCT (Portugal). R.A.P. was supported by a PhD fellowship (SFRH/BD/87607/2012) from FCT (Portugal). Publication was sponsored by LISBOA-01-0145-FEDER-007391, project co-funded by FEDER through POR Lisboa 2020 - Programa Operacional Regional de Lisboa, PORTUGAL 2020 and by Fundacao para a Ciencia e a Tecnologia.BACKGROUND: Dmrt2a is a zinc finger like transcription factor with several roles during zebrafish early development: left-right asymmetry, synchronisation of the somite clock genes and fast muscle differentiation. Despite the described functions, Dmrt2a mechanism of action is unknown. Therefore, with this work, we propose to identify Dmrt2a downstream genes during zebrafish early development. RESULTS: We generated and validated a heat-shock inducible transgenic line, to timely control dmrt2a overexpression, and dmrt2a mutant lines. We characterised dmrt2a overexpression phenotype and verified that it was very similar to the one described after knockdown of this gene, with left-right asymmetry defects and desynchronisation of somite clock genes. Additionally, we identified a new phenotype of somite border malformation. We generated several dmrt2a mutant lines, but we only detected a weak to negligible phenotype. As dmrt2a has a paralog gene, dmrt2b, with similar functions and expression pattern, we evaluated the possibility of redundancy. We found that dmrt2b does not seem to compensate the lack of dmrt2a. Furthermore, we took advantage of one of our mutant lines to confirm dmrt2a morpholino specificity, which was previously shown to be a robust knockdown tool in two independent studies. Using the described genetic tools to perform and validate a microarray, we were able to identify six genes downstream of Dmrt2a: foxj1b, pxdc1b, cxcl12b, etv2, foxc1b and cyp1a. CONCLUSIONS: In this work, we generated and validated several genetic tools for dmrt2a and identified six genes downstream of this transcription factor. The identified genes will be crucial to the future understanding of Dmrt2a mechanism of action in zebrafish.publishersversionpublishe

    Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

    Get PDF
    A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability

    Replication of Extended Lifespan Phenotype in Mice with Deletion of Insulin Receptor Substrate 1

    Get PDF
    We previously reported that global deletion of insulin receptor substrate protein 1 (Irs1) extends lifespan and increases resistance to several age-related pathologies in female mice. However, no effect on lifespan was observed in male Irs1 null mice. We suggested at the time that the lack of any effect in males might have been due to a sample size issue. While such lifespan studies are essential to our understanding of the aging process, they are generally based on survival curves derived from single experiments, primarily due to time and economic constraints. Consequently, the robustness of such findings as a basis for further investigation has been questioned. We have therefore measured lifespan in a second, separate cohort of Irs1 null female mice, and show that, consistent with our previous finding, global deletion of Irs1 significantly extends lifespan in female mice. In addition, an augmented and completed study demonstrates lifespan extension in male Irs1 null mice. Therefore, we show that reduced IRS1-dependent signalling is a robust mechanism through which mammalian lifespan can be modulated

    Does Reduced IGF-1R Signaling in Igf1r+/βˆ’ Mice Alter Aging?

    Get PDF
    Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/βˆ’) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/βˆ’ mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/βˆ’ mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/βˆ’ mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/βˆ’ mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/βˆ’ mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/βˆ’ and wild type mice was observed; and the mean lifespan of the Igf1r+/βˆ’ females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/βˆ’ and wild type mice. These data show that the Igf1r+/βˆ’ mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway

    Aged PROP1 Deficient Dwarf Mice Maintain ACTH Production

    Get PDF
    Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD) that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH) deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH) deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1null (Prop1-/-) and the Ames dwarf (Prop1df/df) mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism

    Review of the literature and suggestions for the design of rodent survival studies for the identification of compounds that increase health and life span

    Get PDF
    Much of the literature describing the search for agents that increase the life span of rodents was found to suffer from confounds. One-hundred-six studies, absent 20 contradictory melatonin studies, of compounds or combinations of compounds were reviewed. Only six studies reported both life span extension and food consumption data, thereby excluding the potential effects of caloric restriction. Six other studies reported life span extension without a change in body weight. However, weight can be an unreliable surrogate measure of caloric consumption. Twenty studies reported that food consumption or weight was unchanged, but it was unclear whether these data were anecdotal or systematic. Twenty-nine reported extended life span likely due to induced caloric restriction. Thirty-six studies reported no effect on life span, and three a decrease. The remaining studies suffer from more serious confounds. Though still widely cited, studies showing life span extension using short-lived or β€œenfeebled” rodents have not been shown to predict longevity effects in long-lived animals. We suggest improvements in experimental design that will enhance the reliability of the rodent life span literature. First, animals should receive measured quantities of food and its consumption monitored, preferably daily, and reported. Weights should be measured regularly and reported. Second, a genetically heterogeneous, long-lived rodent should be utilized. Third, chemically defined diets should be used. Fourth, a positive control (e.g., a calorically restricted group) is highly desirable. Fifth, drug dosages should be chosen based on surrogate endpoints or accepted cross-species scaling factors. These procedures should improve the reliability of the scientific literature and accelerate the identification of longevity and health span-enhancing agents

    SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

    Get PDF
    Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation
    • …
    corecore